29 lines
837 B
Python
29 lines
837 B
Python
from ultralytics import YOLO,Explorer
|
|
|
|
# Load a pre-trained YOLOv10n model
|
|
model = YOLO("./yolov10x.pt")
|
|
# explorer = Explorer(data="./dataset.yaml", model="yolov10x.pt")
|
|
# explorer.create_embeddings_table()
|
|
# similar_images_df = explorer.get_similar(img="./1.jpg")
|
|
# a=explorer.sql_query("WHERE labels LIKE '%person%' AND labels LIKE '%cake%' LIMIT 10")
|
|
# print(a)
|
|
results =model.train(data="./dataset.yaml", epochs=3)
|
|
# results = model("./1.jpg")metrics = model.val()
|
|
print(results)
|
|
|
|
# 保存模型
|
|
model.export(format='onnx')
|
|
|
|
# results[0].show()
|
|
# metrics = model.val()
|
|
# print(metrics)
|
|
|
|
# 保存模型
|
|
# model.export(format='onnx')
|
|
# Perform object detection on an image
|
|
# results = model("./1.jpg")
|
|
# print(results)
|
|
# Display the results
|
|
# results[0].show()
|
|
# results[0].save(filename="result.jpg") # save to disk 保存到磁盘
|